

# External Reliability Evaluation Report

New Resin Qualification on TO-92 package

| Genera               | al Information                      | Locations              |                                      |  |
|----------------------|-------------------------------------|------------------------|--------------------------------------|--|
| Product Lines        | BU 58                               | Wafer fab              | STMicroelectronics<br>Tours (FRANCE) |  |
| Products Description | TS110x<br>XL0840x<br>ACS10x<br>P01x | Assembly plant         | Subcontractor 994X<br>(CHINA)        |  |
|                      | X0x<br>Z0x<br>FLC21-135A            | Reliability Lab        | STMicroelectronics<br>Tours (FRANCE) |  |
| Product Group        | ADG                                 | Reliability assessment | Pass                                 |  |
| Product division     | Discrete & Filter Division          |                        |                                      |  |
| Package              | TO-92                               |                        |                                      |  |
| Maturity Step Level  | Qualified                           |                        |                                      |  |

#### **DOCUMENT INFORMATION**

| Version | Date             | Pages | Prepared by  | Approved by     | Comment     |
|---------|------------------|-------|--------------|-----------------|-------------|
| Rev. 1  | March 26th; 2019 | 11    | Erika LAURET | Julien MICHELON | First issue |

Note: This report is a summary of the reliability trials performed in good faith by STMicroelectronics in order to evaluate the potential reliability risks during the product life using a set of defined test methods.

This report does not imply for STMicroelectronics expressly or implicitly any contractual obligations other than as set forth in STMicroelectronics general terms and conditions of Sale. This report and its contents shall not be disclosed to a third party without previous written agreement from STMicroelectronics.

#### Discrete and Filter division Quality and Reliability

March 29<sup>th</sup>, 2019 Report ID: 19032QRP

### **TABLE OF CONTENTS**

| 1 | APPL | LICABLE AND REFERENCE DOCUMENTS                | 3 |
|---|------|------------------------------------------------|---|
| 2 | GLO  | SSARY                                          | 3 |
|   |      | ABILITY EVALUATION OVERVIEW                    |   |
|   | 3.1  | OBJECTIVES                                     | 4 |
|   | 3.2  | CONCLUSION                                     |   |
| 4 | CHA  | NGE DESCRIPTION                                | 5 |
| 5 | TEST | TS RESULTS SUMMARY                             | Ę |
|   | 5.1  | TEST VEHICLES                                  | 5 |
|   | 5.2  | TEST PLAN AND RESULTS SUMMARY                  | 6 |
| 6 | ANNI | EXES                                           | 7 |
|   | 6.1  | DEVICE DETAILS                                 | 7 |
|   | 6.2  | TESTS DESCRIPTION                              | 8 |
|   | 6.3  | LIST OF PRODUCT INVOLVED IN THIS QUALIFICATION | ç |



## **1 APPLICABLE AND REFERENCE DOCUMENTS**

| Document reference | Short description                                                         |  |
|--------------------|---------------------------------------------------------------------------|--|
| JESD 22            | Reliability test methods for packaged devices                             |  |
| JESD 47            | Stress-Test-Driven Qualification of Integrated Circuits                   |  |
| JESD 94            | Application specific qualification using knowledge based test methodology |  |
| MIL-STD-750C       | L-STD-750C Test method for semiconductor devices                          |  |

## **2 GLOSSARY**

| вом   | Bill Of Materials                       |  |  |
|-------|-----------------------------------------|--|--|
| DUT   | Device Under Test                       |  |  |
| HTRB  | High Temperature Reverse Bias           |  |  |
| TC    | Temperature Cycling                     |  |  |
| ТНВ   | Temperature Humidity Bias               |  |  |
| RSH   | Resistance to Solder Heat               |  |  |
| UHAST | Unbiased Highly Accelerated Stress Test |  |  |
| P/N   | Part Number                             |  |  |
| RH    | Relative Humidity                       |  |  |
| SS    | Sample Size                             |  |  |



## **3 RELIABILITY EVALUATION OVERVIEW**

## 3.1 Objectives

Qualification of new resin assembled in TO-92 package.

## 3.2 Conclusion

Qualification plan has been fulfilled without exception. Reliability tests have shown that those devices behave correctly against environmental tests (no failure). Moreover, the stability of electrical parameters during the accelerated tests demonstrates the robustness of those products and safe operation, which is consequently expected during their lifetime.



## **4 CHANGE DESCRIPTION**

Qualification of new supplier of Halogen-Free Molding Compound for TO-92 package at subcontractor in China in replacement of current resin.

## **5 TESTS RESULTS SUMMARY**

## 5.1 Test vehicles

Four test vehicles were chosen:

- ACS108-8TK-TR
- Z00607MA 1BA2
- P0102DA 5AL3
- TS110-8SA1

| Lot #                     | Part number Package |       | Comment            |  |
|---------------------------|---------------------|-------|--------------------|--|
| Lot 1                     | ACS108-8TK-TR       | TO-92 | Qualification data |  |
| Lot 2                     | Z00607MA 1BA2       | TO-92 | Qualification data |  |
| <b>Lot 3</b> P0102DA 5AL3 |                     | TO-92 | Qualification data |  |
| Lot 4 TS110-8SA1          |                     | TO-92 | Qualification data |  |

March 29th, 2019

Report ID: 19032QRP



# 5.2 Test plan and results summary

| Tool                   | 0.1                          | 0 - 177                                                                       | ss    | Step                   | Failure/SS |       |       |       |
|------------------------|------------------------------|-------------------------------------------------------------------------------|-------|------------------------|------------|-------|-------|-------|
| Test                   | Std ref.                     | Conditions                                                                    |       |                        | Lot 1      | Lot 2 | Lot 3 | Lot 4 |
|                        |                              | Die Orient                                                                    | ed Te | sts                    |            |       |       |       |
| HTRB                   | JESD22 A-108<br>MIL-STD-750C | Temperature=125°C<br>Tension= VAC 600V                                        | 77    | 1000h                  |            | 0/77  |       |       |
| HTRB                   | JESD22 A-108<br>MIL-STD-750C | Temperature=125°C<br>Tension= VAC 800V                                        | 154   | 1000h                  | 0/77       |       |       | 0/77  |
| Package Oriented Tests |                              |                                                                               |       |                        |            |       |       |       |
| TC                     | JESD22 A-104                 | Frequency (cy/h)=2cy/h<br>Temperature (high)=150°C<br>Temperature (low)=-65°C | 308   | 500cy                  | 0/77       | 0/77  | 0/77  | 0/77  |
| RSH                    | ST 0060102<br>JESD22 B-106-A | Temperature=260°C<br>Time (on)=10s                                            | 30    | MESURE<br>AFTER<br>DIP |            |       | 0/30  |       |
| ТНВ                    | JESD22 A-101                 | Humidity (HR)=85%<br>Temperature=85°C<br>Tension=100V                         | 74    | 1000h                  | 0/25       | 0/25  |       | 0/24* |
| UHAST                  | JESD22 A-118                 | Humidity (HR)=85%<br>Pressure=2.3bar<br>Temperature=130°C                     | 231   | 96h                    | 0/77       | 0/77  |       | 0/77  |

<sup>\*</sup> Note: quantity reduced due to scrap unit

# **6 ANNEXES**

## 6.1 <u>Device details</u>

#### 6.1.1 Pin connection

Refer to products datasheets.

### 6.1.2 Package outline/Mechanical data

Refer to products datasheets

# 6.2 Tests Description

| Test name Standard Reference                  |                                      | Description                                                                                                                                                                                                                                                                                                                 | Purpose                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|-----------------------------------------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                               |                                      | Die Oriented                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| HTRB<br>High Temperature<br>Reverse Bias      | JESD22 A-<br>108<br>MIL-STD-<br>750C | HTRB: High Temperature Reverse Bias HTFB / HTGB: High Temperature Forward (Gate) Bias. The device is stressed in static configuration, trying to satisfy as much as possible the following conditions: - low power dissipation; - max. supply voltage compatible with diffusion process and internal circuitry limitations. | To determine the effects of bias conditions and temperature on solid state devices over time. It simulates the devices operating condition in an accelerated way. To maximize the electrical field across either reverse biased junctions or dielectric layers, in order to investigate the failure modes linked to mobile contamination, oxide ageing, layout sensitivity to surface effects                          |  |
|                                               | 1                                    | Package Oriented                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| TC<br>Temperature<br>Cycling                  | JESD22 A-<br>104                     | The device is submitted to cycled temperature excursions, between a hot and a cold chamber in air atmosphere.                                                                                                                                                                                                               | To investigate failure modes related to the thermo-mechanical stress induced by the different thermal expansion of the materials interacting in the die-package system. Typical failure modes are linked to metal displacement, dielectric cracking, molding compound delamination, wire bonds failure, die-attach layer degradation.                                                                                  |  |
| THB Temperature Humidity Bias                 | JESD22 A-<br>101                     | The device is biased in static configuration minimizing its internal power dissipation, and stored at controlled conditions of ambient temperature and relative humidity.                                                                                                                                                   | To evaluate the package moisture resistance with electrical field applied, both electrolytic and galvanic corrosion are put in evidence.                                                                                                                                                                                                                                                                               |  |
| RSH<br>Resistance to<br>solder heat           | ST<br>0060102<br>JESD22 B-<br>106-A  | Device is submitted to a dipping in a solder bath at 260°C with a dwell time of 10s. Only for through hole mounted devices.                                                                                                                                                                                                 | This test is used to determine whether solid state devices can withstand the effects of the temperature to which they will be subjected during soldering of their leads. The heat is conducted through the leads into the device package from solder heat at the reverse side of the board. This procedure does not simulate wave soldering or reflow heat exposure on the same side of the board as the package body. |  |
| UHAST Unbiased Highly Accelerated Stress Test | JESD22 A-<br>118                     | The device is stored in saturated steam, at fixed and controlled conditions of pressure and temperature.                                                                                                                                                                                                                    | To investigate corrosion phenomena affecting die or package materials, related to chemical contamination and package hermeticity.                                                                                                                                                                                                                                                                                      |  |

# 6.3 List of product involved in this qualification

| X00602MA 1AA2 | P0102DA 5AL3  |
|---------------|---------------|
| X00602MA 2AL2 | P0109DA 5AL3  |
| X00602MA 5AL2 | P0111DA 1AA3  |
| X00619MA1AA2  | P0111DA 5AL3  |
| X00619MA2AL2  | P0111MA 1AA3  |
| X00619MA5AL2  | P0111MA 1AA3  |
| X0202DA 1BA2  | P0111MA 1AA3  |
| X0202MA 1BA2  | P0115DA 5AL3  |
| X0202MA 2BL2  | P0115DA 5AL3  |
| X0202NA 1BA2  | P0118DA 1AA3  |
| X0202NA2BL2   | P0118DA 1AA3  |
| X0203MA 1BA2  | P0118MA 2AL3  |
| X0203NA 1BA2  | P0118MA 5AL3  |
| X0205MA 1BA2  | P0124CA 5AL3  |
| X0205MA 2BL2  | P0130AA 1EA3  |
| X0205NA 1BA2  | P0130AA 2AL3  |
| X0225MA 1DA2  | ACS102-6TA-TR |
| X0227MA 5DL2  | FLC21-135A    |
| Z00607MA 1BA2 | XL0840        |
| Z00607MA 2BL2 | XL0840-AP     |
| Z00607MA 5BL2 | XL0840-TR     |
| Z0103MA 1AA2  | ACS108-6SA    |
| Z0103MA 2AL2  | ACS108-6SA-AP |
| Z0103MA 5AL2  | ACS108-6SA-TR |
| Z0103NA 1AA2  | ACS108-8SA    |
| Z0103NA 2AL2  | ACS108-8SA-AP |
| Z0107DA 2AL2  | ACS108-8SA-TR |
| Z0107MA 1AA2  | TS110-7A1     |
| Z0107MA 2AL2  | TS110-7A1-AP  |
| Z0107MA 5AL2  | TS110-8A1     |
| Z0107NA 1AA2  | TS110-8A1-AP  |
| Z0107NA 2AL2  | TS110-8A2     |
| Z0107NA 5AL2  | TS110-8A2-AP  |
| Z0109MA 1AA2  | TS110-8SA1    |
| Z0109MA 2AL2  | TS110-8SA1-AP |
| Z0109MA 5AL2  | TS110-8SA2    |
| Z0109NA 2AL2  | TS110-8SA2-AP |
| Z0110MA 1AA2  |               |
| Z0127MA 2EL2  |               |
| P0102DA 1AA3  |               |
| P0102DA 2AL3  |               |



Quality and Reliability

REL.6088-686-19W

# **Reliability Evaluation Report**

#### **QUALIFICATION of NEW RESIN on TO92**

ASE WEIHAI

**General Information** 

TV1: LA05 TV2: S431

**Product Lines** 

Positive voltage regulators LOW

**Product Description** 

Voltage Adjustable Shunt Reference Low current 1.2 to 37 V adjustable

TV1: L78L05

P/N Positive voltage regulators

**Product division** 

TV2:TS431

Product Group AMG

General Purpose Analog & RF

Division

Package TO92

Silicon Process technology TV1:HBIP40V TV2:HF2CMOS Locations

Wafer fab Singapore 6

Assembly plant ASE WEIHAI

Reliability Lab Catania Reliability LAB

#### **DOCUMENT INFORMATION**

| Version | Date      | Pages | Handled by                           | Comment      |
|---------|-----------|-------|--------------------------------------|--------------|
| 1       | June 2019 | 7     | Antonio Russo<br>Giuseppe Giacopello | Final Report |



REL.6088-686-19W

### Quality and Reliability

#### **TABLE OF CONTENTS**

| 1 | APPLICABLE AND REFERENCE DOCUMENTS         | 3 |
|---|--------------------------------------------|---|
|   | GLOSSARY                                   |   |
|   | RELIABILITY EVALUATION OVERVIEW OBJECTIVES |   |
| 4 | CONCLUSION                                 | 3 |
|   | DEVICE CHARACTERISTIC                      | _ |
|   | 5.1 CHANGE DESCRIPTION                     |   |
|   | 5.2 CONSTRUCTION NOTE                      |   |
|   | TEST VEHICLE & TEST PLAN                   |   |
| 7 | ANNEXES                                    | 6 |
|   | 7.1 DEVICES DETAILS                        |   |
|   | TEST DESCRIPTION                           |   |



REL.6088-686-19W

Quality and Reliability

#### **1 APPLICABLE AND REFERENCE DOCUMENTS**

| Document reference  | Short description                                       |  |
|---------------------|---------------------------------------------------------|--|
| JESD47              | Stress-Test-Driven Qualification of Integrated Circuits |  |
| Report ID: 19032QRP | New Resin Qualification on TO-92 package (ADG)          |  |

#### 2 GLOSSARY

| DUT | Device Under Test |  |  |
|-----|-------------------|--|--|
| SS  | Sample Size       |  |  |

#### 3 RELIABILITY EVALUATION OVERVIEW OBJECTIVES

In order to qualify new molding compound for TO92 assembled in ASE Weihai, three assy lot are requested. We have performed reliability trials on two TVs adding ADG reliability data (as 3nd assy lot, Report ID: 19032QRP)

#### 4 CONCLUSION

Qualification plan has been fulfilled without exception. Reliability tests have shown that those devices behave correctly against environmental tests (no failure). Moreover, the stability of electrical parameters during the accelerated tests demonstrates the robustness of those products and safe operation, which is consequently expected during their lifetime.



Quality and Reliability

REL.6088-686-19W

#### 5 DEVICE CHARACTERISTIC

## 5.1 Change description

Qualification of new supplier of Halogen-Free Molding Compound for TO-92 package at subcontractor in China in replacement of current resin.

## 5.2 Construction note

| P/N                                       | L78L05           | TS431        |  |  |  |  |
|-------------------------------------------|------------------|--------------|--|--|--|--|
| Wafer/Die fab. information                |                  |              |  |  |  |  |
| Wafer fab manufacturing location          | Ang Mo Kio 6"    |              |  |  |  |  |
| Technology                                | HBIP40V          | HF2CMOS      |  |  |  |  |
| Die finishing back side                   | Lapped Silicon   |              |  |  |  |  |
| Die size                                  | 0.706X0.766      | 0.900X1.350  |  |  |  |  |
| Passivation type                          | SiN (n           | itride)      |  |  |  |  |
| Wafer Testing (EWS) information           |                  |              |  |  |  |  |
| Electrical testing manufacturing location | Ang Mo Kio EWS   |              |  |  |  |  |
| Tester                                    | ASL1000          |              |  |  |  |  |
| Test program                              | LA78L05-MS02.nX4 | S431 TS431.5 |  |  |  |  |
| Assembly information                      |                  |              |  |  |  |  |
| Assemby Site                              | ASE WEIHAI       |              |  |  |  |  |
| Package description                       | TO 92            |              |  |  |  |  |
| Molding compound                          | Ероху            |              |  |  |  |  |
| Frame                                     | WSD-0200 TO-237  |              |  |  |  |  |
| Die attach material                       | Ероху            |              |  |  |  |  |
| Wires bonding materials/diameters         | Cu 1mil          | Gold 1mil    |  |  |  |  |
| Final testing information                 |                  |              |  |  |  |  |
| Testing location                          | ASE WEIHAI       |              |  |  |  |  |
| Tester                                    | ASL1000          |              |  |  |  |  |
| Test program                              | LA78L05-MS02.nX4 | S431 TS431.5 |  |  |  |  |



Quality and Reliability

REL.6088-686-19W

#### 6 TEST VEHICLE & TEST PLAN

| Lot# | T.V.         | Process/<br>Package | Product Line | Comments |
|------|--------------|---------------------|--------------|----------|
| 1    | L78L05ABZ-AP | TO02                | LA0501       |          |
| 2    | TS431IZT     | TO92                | S43101       |          |

|          |                 |                 | Conditions                         | ss    | Steps                | Failure/SS |       | Note |
|----------|-----------------|-----------------|------------------------------------|-------|----------------------|------------|-------|------|
| Test     | PC              | Std ref.        |                                    |       | h=hours<br>cy=cycles | L7805      | TS431 |      |
| Die Orie | nted            | Tests           |                                    |       |                      |            |       |      |
| HTOL     |                 | JESD22<br>A-108 | Ta=125°C<br>Vbias= 5V              | 77    | 168 h                |            | 0/77  |      |
|          |                 |                 |                                    |       | 500 h                |            | 0/77  |      |
|          |                 |                 |                                    |       | 1000 h               |            | 0/77  |      |
|          |                 |                 | Ta=125°C<br>Vbias= 35V             | 77    | 168 h                | 0/77       |       |      |
| HTOL     |                 | JESD22          |                                    |       | 500 h                | 0/77       |       |      |
|          |                 | A-108           |                                    |       | 1000 h               | 0/77       |       |      |
| HTSL     | JESD22<br>A-103 | Ta=150°C        | 154                                | 168 h | 0/77                 | 0/77       |       |      |
|          |                 |                 |                                    | 500 h | 0/77                 | 0/77       |       |      |
|          |                 | 71 100          |                                    |       | 1000 h               | 0/77       | 0/77  |      |
| Package  | e Ori           | ented Tes       | ts                                 |       |                      |            |       |      |
| THB      |                 | JESD22<br>A-101 | Ta = 85°C,<br>RH=85%, BIAS<br>+24V | 50    | 168 h                | 0/25       | 0/25  |      |
|          |                 |                 |                                    |       | 500 h                | 0/25       | 0/25  |      |
|          |                 |                 |                                    |       | 1000 h               | 0/25       | 0/25  |      |
| TC       |                 | JESD22<br>A-104 | _                                  | 154   | 100 cy               | 0/77       | 0/77  |      |
|          |                 |                 |                                    |       | 500 cy               | 0/77       | 0/77  |      |
|          |                 |                 |                                    |       | 1000 cy              | 0/77       | 0/77  |      |
| AC       |                 | JESD22<br>A-102 | Pa=2Atm /<br>Ta=121°C              | 154   | 96 h                 | 0/77       | 0/77  |      |

NOTE: For the 3nd lot Reliability data, please refer to ADG Report ID: 19032QRP



Quality and Reliability

REL.6088-686-19W

### **7** ANNEXES

### 7.1 <u>Devices details</u>

#### 7.1.1 <u>Pin connections</u>

Refer to products datasheet

#### 7.1.2 Package Mechanical data

Refer to products datasheet



Quality and Reliability

REL.6088-686-19W

## **8 TEST DESCRIPTION**

| Test name                                  | Description                                                                                                                                                               | Purpose                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Die Oriented                               |                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| HTOL<br>High Temperature<br>Operative Life | The device is stressed in static or dynamic configuration, approaching the operative max. absolute ratings in terms of junction temperature and bias condition.           | To determine the effects of bias conditions and temperature on solid state devices over time. It simulates the devices' operating condition in an accelerated way. The typical failure modes are related to, silicon degradation, wire-bonds degradation, oxide faults.                                                              |  |  |  |  |
| HTSL<br>High Temperature<br>Storage Life   | The device is stored in unbiased condition at the max. temperature allowed by the package materials, sometimes higher than the max. operative temperature.                | To investigate the failure mechanisms activated by high temperature, typically wire-bonds solder joint ageing, data retention faults, metal stress-voiding.                                                                                                                                                                          |  |  |  |  |
| Package Oriented                           |                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| AC<br>Auto Clave<br>(Pressure Pot)         | The device is stored in saturated steam, at fixed and controlled conditions of pressure and temperature.                                                                  | To investigate corrosion phenomena affecting die or package materials, related to chemical contamination and package hermeticity.                                                                                                                                                                                                    |  |  |  |  |
| <b>TC</b><br>Temperature<br>Cycling        | The device is submitted to cycled temperature excursions, between a hot and a cold chamber in air atmosphere.                                                             | To investigate failure modes related to the thermo-mechanical stress induced by the different thermal expansion of the materials interacting in the die-package system. Typical failure modes are linked to metal displacement, dielectric cracking, molding compound delamination, wirebonds failure, die-attach layer degradation. |  |  |  |  |
| <b>THB</b> Temperature Humidity Bias       | The device is biased in static configuration minimizing its internal power dissipation, and stored at controlled conditions of ambient temperature and relative humidity. | To evaluate the package moisture resistance with electrical field applied, both electrolytic and galvanic corrosion are put in evidence.                                                                                                                                                                                             |  |  |  |  |